固有ベクトル
対称行列 の非対角成分のうち絶対値が最大の成分を とするとき, その他の対角成分を , その他の非対角成分を とした行列 を考える. に と, 転置行列 を左右からかけてできた行列 の固有値と固有ベクトルは元の行列 から変化しない. これを相似変換という. と…
正方行列 の逆行列を求め として反復法で最大固有値を求めれば, その逆数が最小固有値になる. 逆行列を計算するより, を解いた方が簡単. 逆べき乗法ともいう. package main import "fmt" import "math" const N = 4 func main() { var a [N][N]float64 = [N]…
の正方行列 と 次元のベクトル について (ただし ) が成り立つとき を固有値, を固有ベクトルという. 最初に適当なベクトル から始めて を反復すると は行列 の最大固有値に対応する固有ベクトルに収束する. 固有値はレイリー(Rayleigh)商 により求める. べ…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…
n × n の正方行列 A と n次元のベクトル x について Ax = λx (ただし x ≠ 0) が成り立つとき λを固有値, x を固有ベクトルという. 最初に適当なベクトルx0から始めて xk+1 = Axk を反復すると xk は行列 A の最大固有値に対応する固有ベクトルに収束する. 固…